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Abstract 

This paper examines the outperformance of naive diversification relative to optimal 

diversification. From out-of-sample analysis using portfolios consisting of individual stocks as 

well as diversified equity portfolios, we find that optimal diversification fails to consistently 

outperform naive diversification. Our results show that naive diversification increases tail risk 

measured by skewness and kurtosis and makes portfolio returns more concave relative to equity 

benchmarks. In addition, tail risk exposure and concavity increases with the number of stocks in 

the portfolio. These results imply that the outperformance of naive diversification relative to 

optimal diversification represents a compensation for the increase in tail risk and the reduced 

upside potential associated with the concave payoff. 
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1. Introduction 

Although Markowitz’s (1952) mean–variance framework provides the basic concept of 

modern portfolio theory and is still widely used in practice today in asset allocation and active 

portfolio management, 1

The naive 1/N diversification rule is the strategy in which a fraction 1/N of wealth is 

allocated to each of the N assets available for investment at each rebalancing date. The naive 

strategy does not align with the mean–variance framework of optimal asset allocation strategy, 

which suggests giving more weight to those assets that contribute to higher mean–variance 

efficiency. Compared with the optimal portfolio, the most appealing feature of the 1/N portfolio 

is that it is easy to implement because it does not require any estimation of the moments of asset 

returns, optimization, and short sales. Furthermore, previous literature documents that optimal 

portfolio strategy does not dominate the naive 1/N strategy. For instance, Bloomfield, Leftwich, 

and Long (1977) show that sample-based mean–variance optimal strategies do not outperform a 

simpler strategy of maintaining equal dollar investments in each available stock. Jorion (1991) 

finds that the equally weighted and value-weighted indices have out-of-sample performance 

 individual investors tend to use naive diversification rather than 

sophisticated diversification. For example, Benartzi and Thaler (2001) and Liang and 

Weisbenner (2002) find that investors follow the naive 1/N strategy to allocate their wealth 

across assets. Huberman and Jiang (2006) document that participants tend to allocate their 

contributions evenly across the funds they use, with the tendency weakening with the number of 

funds used. 

                                                            
1 See Grinold and Kahn (1999), Litterman (2003), and Meucci (2005) for practical applications of the mean–varianc
e framework. For a general survey of the literature on portfolio selection, see Campbell and Viceira (2002) and Bran
dt (2010). 
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similar to that of the minimum-variance and tangency portfolios obtained with Bayesian 

shrinkage methods. 

In the literature on optimal portfolio choice, the outperformance of the 1/N portfolio 

strategy relative to the optimal portfolio strategy in out-of-sample asset allocation tests is largely 

attributed to estimation error in the optimal portfolio strategy. To implement the optimization 

model in practice, model parameters, such as the vector of expected excess returns over the risk-

free rate and the variance–covariance matrix of asset returns, have to be estimated from the data. 

However, due to estimation error,2 the estimated optimal portfolio rule can substantially differ 

from the true optimal rule. In other words, the estimation error in the optimal portfolio strategy 

produces extreme weights that fluctuate substantially over time and results in poor out-of-sample 

performance. For this reason, academic research proposes various extensions of the Markowitz 

model to reduce estimation errors with the goal of improving the performance of the Markowitz 

model.3

However, despite the considerable effort required to handle estimation error in the 

optimal portfolio strategy, this approach does not consistently dominate naive diversification. 

Recently, DeMiguel, Garlappi, and Uppal (2009b) report that none of the sample-based mean–

variance models and almost none of the sophisticated extensions of the Markowitz rule 

consistently outperform the 1/N strategy.

 

4

                                                            
2 Merton (1980) documents that a very long history of returns is required to obtain an accurate estimate of expected r
eturns. In addition, Green and Hollifield (1992) and Jagannathan and Ma (2003) report that the estimate of the varia
nce–covariance matrix is poorly behaved. 
3 For examples of the asset allocation models proposed to reduce estimation error, see Bawa, Brown, and Klein (197
9), Jorion (1986), Best and Grauer (1992), MacKinlay and Pastor (2000), Pastor (2000), Jagannathan and Ma (2003),
 Garlappi, Uppal, and Wang (2007), and Kan and Zhou (2007). 

 

4 This finding triggered a new wave of research that seeks to develop portfolio strategies superior to 1/N and to reaffi
rm the practical value of portfolio theory (e.g., DeMiguel et al., 2009a; Tu and Zhou, 2011; Behr, Guettler, and True
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Our objective in this paper is to explore why optimal diversification cannot outperform 

naive diversification. In contrast to the previous literature, we focus on the tail risk exposure of 

the 1/N strategy rather than the estimation error of the optimal strategy.5 Goetzmann et al. (2007) 

argue that strategies can enhance their performance at the expense of increased tail risk without 

additional information by changing the distribution of future returns. For example, when 

portfolio payoffs are concave relative to a benchmark, portfolio returns can be enhanced merely 

by compensation for the (modest) increase in tail risk and the reduced upside potential associated 

with the concave payoff.6

Our first contribution is to show that optimal diversification fails to outperform naive 

diversification in any consistent way. Unlike the previous literature, we construct a portfolio by 

using individual stocks as well as diversified portfolios. Compared with the case of using 

 The 1/N strategy can lead to a concave pattern of returns relative to the 

equity benchmark because it is similar to a conservative long-term asset mix strategy that causes 

the investor to buy equities as the equity market falls and sell them when it rises. 

In this paper, using individual stock data as well as diversified equity portfolio data, we 

compare the out-of-sample performances and tail risks of the naive and optimal portfolio 

strategies. We use the following performance and tail risk measures: the Sharpe ratio, certainty 

equivalent (CEQ) returns, turnover, manipulation-proof performance measures (MPPMs), 

skewness, kurtosis, value at risk (VaR), and expected shortfall (ES). We also compare the return 

distributions of the naive and optimal portfolio strategies. Last, we examine whether the naive 

strategy has a concave payoff relative to the benchmark. 

                                                                                                                                                                                                
benbach, 2012; Kourtis, Dotsis, and Markellos, 2012). Since it is not the focus of this study, we do not discuss this is
sue in detail. 
5 Recently, Pflug, Pichler, Wozabal (2012) explain that the relative success of the 1/N rule is the result of an inaccura
te specification of the data generating process, that is, a lack of accuracy in modeling the distributions of the random
 asset returns, in a stochastic portfolio optimization context. 
6 For example, see Brown et al. (2006) and Brown, Gregoriou, and Pascalau (2012). 
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diversified portfolios, optimal diversification is more likely to outperform naive diversification in 

the case of using individual stocks because individual stocks have higher idiosyncratic volatility 

than diversified portfolios. Nevertheless, naive diversification outperforms optimal 

diversification in both cases. Second, our paper contributes to the literature on the effect of 

diversification on tail risk because we show that the 1/N diversification increases tail risk 

measured by skewness and kurtosis as the number of stocks in portfolio increases. Last, our 

paper contributes to the literature on optimal portfolio choice because we focus on the tail risk 

exposure of the 1/N strategy rather than the estimation error of the optimal strategy as a source of 

the outperformance of the 1/N strategy. Our results imply that the outperformance of naive 

diversification is due to compensation for the increase in tail risk and the reduced upside 

potential associated with the concave payoff. 

The rest of the paper is organized as follows. Section 2 introduces two asset allocation 

models: naive diversification and optimal diversification. Section 3 describes the dataset and 

methodology, including portfolio construction and measures of performance and tail risk. Section 

4 presents our main empirical results and Section 5 presents our conclusions. 

 

2. Naive and optimal diversification 

In this section, we introduce the asset allocation models employed in this paper. While 

we use the 1/N portfolio strategy as the naive diversification, we use the sample-based mean–

variance portfolio strategy and the sample-based mean–variance portfolio strategy with short sale 

constraints as the optimal diversification.7

                                                            
7 To confirm whether our main results depend on the asset allocation model considered, we also use the other model
s considered by DeMiguel et al. (2009b). In Section 4.1 (the analysis using diversified equity portfolios), we report t
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2.1 The portfolio choice problem 

Consider the standard portfolio choice problem in which an investor chooses his optimal 

portfolio weight among N risky assets.8 Let Rt be the N-vector of excess returns over the risk-

free asset on the N risky assets available for investment at time t. We assume that Rt is 

independent and identically distributed over time and has a multivariate normal distribution with  

expected returns on the risky asset in excess of the risk-free μt N N× and  variance–covariance 

matrix of returns ∑t. 

According to the standard mean–variance framework (Markowitz, 1952, 1959; Sharpe, 

1970), the investor chooses his vector of portfolio weights invested in the N risky assets, xt

max ,
2t

T T
t t t t tx

x x xγµ − Σ

, to 

maximize the following quadratic expected utility function: 

   (1) 

where the scalar γ  is the investor’s risk aversion parameter. The solution of the above problem is 

 * 11 .t t tx µ
γ

−= Σ   (2) 

The vector of relative portfolio weights invested in the N risky assets at time t, *
tw , is 

 
* 1

*
* 1

,
1 1

t t t
t T T

N t N t t

xw
x

µ
µ

−

−

Σ
= =

Σ
  (3) 

                                                                                                                                                                                                
he results of all the models. In Section 4.2 (the analysis using individual stocks), however, we report only three mod
els—the 1/N portfolio strategy, the sample-based mean–variance portfolio strategy, and the sample-based mean–vari
ance portfolio strategy with short sale constraints—because the main empirical results are similar and qualitatively u
nchanged. 
8 In the paper, we consider the portfolio with only risky assets instead of the overall portfolio, which consists of both
 risk-free and risky assets, because we want to focus on the effect of asset allocation alone. The overall portfolio wou
ld contain the effect of market timing ability as well. In addition, since the optimization problem is expressed in term
s of returns in excess of the risk-free rate, we do not need the constraint that the weights sum to one. 
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where 1N  is an N-vector of ones. The relative weight is normalized by the absolute value of the 

sum of the portfolio weights to preserve the direction of the portfolio position in the few cases 

where the sum of the weights on the risky assets is negative. 

 

2.2 Naive 1/N portfolio 

 The naive 1/N strategy is a special estimator of w*

1/
1 .Nw
N

=

 that can be expressed as 

   (4) 

This strategy ignores all data information and does not implement any optimization or estimation. 

From Equation (3), this strategy can also be considered a strategy that estimates the moments μt 

and ∑t with the restriction that μt is proportional to ∑t1N

µ̂

 for all t, which implies that the 

expected returns are determined by total risk rather than systematic risk. 

 

2.3 Sample-based mean–variance portfolio 

To implement Markowitz’s (1952) mean–variance model, the optimal portfolio weights 

are usually calculated by using a two-step procedure. First, the mean and covariance matrices of 

asset returns are estimated by their sample counterparts  and Σ̂ , respectively. Second, these 

sample estimates are simply plugged into Equation (3) to compute the optimal portfolio weights. 

Note that this portfolio strategy completely ignores the possibility of estimation risk. 

 

2.4 Sample-based mean–variance portfolio with short sale constraints 

The sample-based mean–variance portfolio with short sale constraints is obtained by 

solving Equation (1) with additional nonnegativity constraints on the portfolio weights. 
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DeMiguel et al. (2009b) note that imposing a short sale constraint on the sample-based mean–

variance problem is equivalent to shrinking the expected return toward the average. Similarly, 

Jagannathan and Ma (2003) show that imposing a short sale constraint on the minimum-variance 

portfolio is equivalent to shrinking the extreme elements of the covariance matrix. This simple 

constraint deals with estimation error in the mean–variance portfolio very well. 

 

3. Data and methodology 

3.1 Data 

This paper uses two primary datasets, diversified equity portfolios and individual stocks, 

to construct portfolios from the naive 1/N and optimal portfolio strategies. The first primary 

dataset, which we consider the diversified equity portfolios, is the set of portfolios from the 

Fama–French four-factor model (the “FF-4-factor” dataset of DeMiguel et al., 2009b). 

Specifically, this dataset consists of 20 size- and book-to-market portfolios and the MKT, SMB, 

HML, and UMD portfolios. The number of risky assets in this dataset is 24. Following Wang 

(2005) and DeMiguel et al. (2009b), of the 25 size- and book-to-market portfolios, we exclude 

the five portfolios containing the largest firms, because the MKT, SMB, and HML portfolios are 

almost a linear combination of the 25 Fama–French portfolios. This dataset is collected from Ken 

French’s website9

                                                            
9 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

. The second primary dataset, which we consider individual stocks, comprises 

the monthly individual stock returns from the Center for Research in Security Prices (CRSP). 

The CRSP database covers all stocks on the NYSE, Amex, NASDAQ, and NYSE Arca. Our 
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sample spans the period January 1963 to December 2011, for a total of 588 monthly 

observations.10

In the analysis using diversified equity portfolios, we use all 24 assets in the dataset to 

construct portfolios. However, to examine not only the comparison between naive and optimal 

diversification in terms of performance and tail risk but also the effect of diversification on 

performance and tail risk, we construct a portfolio consisting of randomly selected stocks in the 

analysis, using individual stocks across various numbers of stocks in the portfolio. The number 

of individual stocks in the portfolio, N, ranges from two to 50. For each N, N stocks are randomly 

 

 

3.2 Portfolio construction 

To compare the out-of-sample performance and tail risk of the naive and optimal 

portfolio strategies, we use a rolling-sample approach adopted from the work of DeMiguel et al. 

(2009b). Let T be the length of asset returns and M be the length of the estimation window for 

parameters in the asset allocation model (in our study, M = 120 months). In each month t, starting 

from t = M + 1, we estimate the vector of expected excess asset returns over the risk-free rate and 

the variance–covariance matrix of asset returns by using nonmissing return observations over the 

past M months. These estimated parameters are then used to calculate the relative portfolio 

weights in the portfolio of only risky assets. Then, we use these weights to obtain the portfolio 

return in month t + 1. This process is repeated by adding the return for the next period in the 

dataset and dropping the earliest return, until the end of the dataset is reached. For this reason, 

the outcome of this rolling-sample approach is a series of T – M monthly out-of-sample returns 

generated by each of the portfolio strategies. 

                                                            
10 Since our major finding may be an artifact of the financial crisis and excessive tail risk, our analysis uses a sample
 that does not include the period of the US subprime crisis. For further information, see Section 4.3. 
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selected B times to construct portfolios (in our study, B = 10,000). To obtain sensible measures of 

performance and tail risk for portfolios from the time-series regressions, we require that all N 

stocks that are randomly selected to construct a portfolio have at least 120 months of overlapping 

return history. Moreover, while we use all T – M monthly portfolio returns in the analysis using 

diversified equity portfolios, we use only the first 120 months of portfolio returns in the analysis 

using individual stocks to avoid oversampling returns in the period of the US subprime crisis. 

 

3.3 Measures of performance and tail risk 

 

3.3.1 Performance measures 

We compute the out-of-sample Sharpe ratio, CEQ returns, portfolio turnover, and 

MPPMs to measure portfolio performance. The out-of-sample Sharpe ratio of strategy k is 

defined as the sample mean of out-of-sample excess returns (over the risk-free asset), ˆkµ , 

divided by their sample standard deviation, ˆkσ : 

 

ˆ
SR   .

ˆ
k

k

k

µ
σ

=  (5) 

The CEQ return is defined as the risk-free rate that an investor is willing to accept rather 

than take the risky portfolio from a particular strategy. The CEQ return of strategy k is calculated 

as 

 

2ˆˆCEQ   ,
2k k k
γµ σ= −  (6) 

where ˆkµ  and ˆkσ  are the mean and variance, respectively, of out-of-sample excess returns for 

strategy k and γ  is risk aversion. Our paper reports the results for the case of 1γ = . 
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Portfolio turnover is defined as the average sum of the absolute value of the trades across 

the N available stocks. The portfolio turnover of strategy k is calculated as 

 ( ), , 1 , ,
1 1

1 ˆˆ ,
T M N

k k j t k j t
t j

Turnover w w
T M +

−

+
= =

= −
− ∑∑  (7) 

where , , 1ˆ k j tw +  is the portfolio weight in stock j at time t under strategy k; 
, ,

ˆ
k j t

w +  is the portfolio 

weight before rebalancing at time 1t +  and , , 1ˆ k j tw +  is the targeted portfolio weight after 

rebalancing at time 1t + . The turnover defined above can be interpreted as the average 

percentage of wealth traded in each period. 

Goetzmann et al. (2007) point out that single-valued performance measures such as the 

Sharpe ratio are subject to dynamic manipulation that enhances performance scores without 

additional information by changing the distribution of future returns. To avoid this, we use the 

MPPM proposed by Goetzmann et al. (2007) to measure portfolio performance. The MPPM of 

the portfolio for strategy k, ˆ
kΘ , is computed as 

 1
, , ,

1

1 1ˆ  = ln [(1 ) / (1 )] ,
(1 )

T

k k t f t f t
t M

r r r
t T M

ρ

ρ
−

= +

 
Θ + + + − ∆ − 

∑  (8) 

where rk,t is the out-of-sample excess return for strategy k at time t, rf,t

Θ̂

 is the risk-fee rate at time 

t, Δt is the length of time between observations, and ρ is risk aversion. The MPPM in Equation 

(8) does not require any specific distribution of return. The estimated MPPM, , is such that 

investors with a constant relative aversion ρ can earn ˆexp( )tΘ⋅∆  above the risk-free rate from a 

risk-free portfolio. This measure penalizes negative excess returns more as relative risk aversion 

increases, since the scores also decrease, given observed return data, as ρ increases. In our paper, 

we report the results for the case of 3ρ = . 
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3.3.2 Tail risk measures 

We compute the out-of-sample skewness, kurtosis, VaR, and ES to measure portfolio tail 

risk. The skewness and kurtosis of a portfolio for strategy k are computed as 

 

3

3

ˆ( )SK  = 
ˆ

k k
k

k

E r µ
σ
− , (9) 

 

4

4

ˆ( )KU  = 
ˆ

k k
k

k

E r µ
σ
− , (10) 

where rk ˆkµ is the out-of-sample excess return for strategy k,  is the mean of rk ˆkσ, and  is the 

variance of rk

1 α−

. Skewness is a measure of the symmetry of the probability density function. A 

positive (negatively) skewed distribution has a larger and longer right (left) tail and more 

probability mass is concentrated on the left-hand (right-hand) side of the mean. Kurtosis is 

generally regarded as a measure of a distribution’s tail heaviness relative to that of the normal 

distribution; however, it also measures a distribution’s peakedness. Due to the higher-power 

terms in Equations (9) and (10), the measure of skewness and kurtosis tend to be influenced by 

one or more outliers in the data of interest. 

The measures VaR and ES are widely used risk measures of the risk of loss on a specific 

portfolio of financial assets. The VaR is the potential maximum loss for a given confidence level 

 and the ES is the expected loss, conditional on the loss being greater than or equal to the 

corresponding VaR. We compute the VaR and ES of the portfolio for strategy k as 

 Pr( ) ,kr VaRα α< − =  (11) 

 [ ],k kES E r r VaRα α= − ≤ −  (12) 
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where rk 1 α− is the out-of-sample excess return for strategy k and  is the confidence level. Our 

paper reports the results for the case of 0.05α = . Compared with the VaR, the ES is more 

sensitive to the shape of the loss distribution in the tail of the distribution. 

 

4. Empirical results 

In this section, to investigate why optimal diversification cannot outperform naive 

diversification, we empirically compare naive diversification to optimal diversification in terms 

of performance, tail risk, return distribution, and portfolio return concavity. Section 4.1 reports 

the empirical results using diversified equity portfolios, the extended results of DeMiguel et al. 

(2009b),11

Table 1 reports the performance and tail risk measures for a portfolio consisting of 

diversified equity portfolios across the asset allocation models considered by DeMiguel et al. 

(2009b). The asset allocation models are listed in Appendix 1.

 whose sample period includes the recent US subprime crisis. Section 4.2 reports the 

empirical results using individual stocks. 

 

4.1 Results from the analysis of diversified equity portfolios 

4.1.1 Performance and tail risk measures 

 

[Insert Table 1 about here] 

 

12

                                                            
11 The sample period of DeMiguel et al. (2009b) is from July 1963 to November 2004. 
12 We construct portfolios by using a rolling-sample approach, except for the sample-based mean–variance in sample
 (mv - in sample). 
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Analyzing the performance measures, we find several results that are consistent with 

those of DeMiguel et al. (2009b). First, none of the strategies from the optimizing models 

consistently outperform the 1/N strategy. While the constrained strategies have higher Sharpe 

ratios than the 1/N strategy, none of the strategies from the optimal models is better than the 1/N 

strategy in terms of CEQ and turnover. In particular, the sample-based mean–variance strategy 

(mv) is worse than the 1/N strategy. In Table 1, while the Sharpe ratio, CEQ, and turnover of the 

1/N strategy are 0.1393, 0.0056, and 0.0197, respectively, those of the sample-based mean–

variance strategy (mv) are 0.0770, -0.4344, and 145.4396, respectively. Second, Bayesian 

strategies seem to improve performance, but not very effectively. While the Bayes–Stein strategy 

(bs) and the Bayesian data-and-model strategy (dm) outperform the sample-based mean–variance 

strategy (mv), the 1/N strategy outperforms these Bayesian strategies. Third, constrained policies 

help improve performance, but not sufficiently. Constrained strategies do better than their 

corresponding unconstrained strategies. For example, while the Sharpe ratio, CEQ, and turnover 

of the Bayes–Stein strategy (bs) are 0.0795, -0.1656, and 46.7942, respectively, those of the 

Bayes–Stein strategy with short sale constraints (bs-c) are 0.1571, 0.0057, and 0.2315, 

respectively. However, the constrained strategies do not consistently outperform the 1/N strategy. 

Although some of the constrained strategies, such as the minimum-variance strategy with short 

sale constraints (min-c) and minimum-variance with generalized constraints (g-min-c), have 

significantly higher Sharpe ratios than the 1/N strategy, none of the constrained strategies has a 

higher CEQ than the 1/N strategy in a statistically significant way. Furthermore, the 1/N strategy 

has the lowest turnover. 

From analysis of the tail risk measures, first, we find that the strategy that exhibits better 

performance tends to have negative skewness and positive kurtosis. In particular, the skewness of 
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the 1/N strategy and the constrained strategies, which outperform the other strategies, is less than 

-0.6 and the kurtosis of those strategies is greater than five. This result implies that the better –

performing strategy tends to increase tail risk exposure. Second, the strategy that contains 

outliers from extreme portfolio weights  tends to have extremely large skewness and kurtosis. 

For example, the skewness of the sample-based mean–variance strategy (mv) and the Bayes–

Stein strategy (bs) is greater than 19 and their kurtosis is greater than 400. Third, the strategy that 

has a lower standard deviation tends to have lower VaR and ES. Specifically, the minimum-

variance strategy (min) and the mixture of minimum-variance and 1/N strategies (ew-min) have 

the lowest VaR and ES values, as well as standard deviation. 

 

4.1.2 Return distribution 

To illustrate the difference in tail risk exposure across strategies, we compare the return 

distributions of the naive 1/N and optimal portfolio strategies. 

 

[Insert Figure 1 about here] 

Figure 1 reports the kernel smoothed histogram for the return distributions of portfolios 

consisting of both diversified stock portfolios from the naive 1/N strategy as well as optimal 

portfolio strategies. To simplify the graph, we consider only the sample-based mean–variance 

(mv) and the sample-based mean–variance with short sale constraints (mv-c) as the optimal 

portfolio strategy. To compare these return distributions to a normal distribution, in Figure 1 we 

also report the corresponding normal distribution generated by the pooled mean and pooled 

standard deviation from the return distributions of the naive 1/N and optimal portfolio strategies. 

http://voices.yahoo.com/kernel-smoothed-distributions-ogives-histograms-4067647.html�
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Figure 1 shows that all strategies exhibit leptokurtic distribution, which means positive 

excess kurtosis and heavier tails than the normal distribution. However, only the strategies that 

have better performance, the naive 1/N strategy and the sample-based mean–variance portfolio 

strategy with short sale constraints (mv-c), have negatively skewed distribution, which means a 

larger and longer left tail than the normal distribution. In other words, the strategy that has better 

performance tends to have increased left tail risk exposure and reduced upside potential. This 

tendency is clearer in the naive 1/N strategy than in the other strategies. This result implies that 

the strategy that has better performance, especially the naive 1/N strategy, may have a more 

concave payoff than the strategy with poor performance. 

 

4.1.3 Concavity of the portfolio payoff 

In this section, we examine whether the portfolio from the naive 1/N strategy or the 

optimal portfolio strategies has concave payoff relative to the equity benchmark. More 

specifically, to examine the concavity of a portfolio’s payoff, we use the coefficients of 

Henriksson and Merton (1981) and Treynor and Mazuy (1966). Henriksson and Merton (1981) 

and Treynor and Mazuy (1966) propose a test of market timing ability in an extended market 

model regression since they argue that a fund manager who can successfully time the market 

should demonstrate convex returns relative to a benchmark. However, nonlinear return patterns 

are not limited to market timing strategies. For example, Agarwal and Naik (2004) argue that 

concave payoff patterns in hedge fund returns result from exposure to option-based risk factors 

rather than to negative timing ability. While intent to limit tail risk exposure through portfolio 

insurance–type strategies will lead to convex returns relative to a benchmark, increases in tail 

risk exposure will lead to concave returns. 
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The coefficients of Henriksson and Merton (1981) and Treynor and Mazuy (1966) are 

computed from the regression 

 0 1 2 ,t t t tr m cγ γ γ ε= + + +  (13) 

where rt and mt

( ,0)t tc Max m= −

 are the excess returns on the portfolio and the market, respectively. The timing 

variable is  for Henriksson and Merton (1981) and 2
t tc m=  for Treynor and 

Mazuy (1966). 

 

[Insert Table 2 about here] 

 

Table 2 reports the timing coefficients for a portfolio consisting of diversified equity 

portfolios across the asset allocation models listed in Appendix 1. The t-statistics are given in 

parentheses. Numbers in bold denote the coefficients’ statistical significance. In Table 2, we find 

that the strategies that show higher performance in Table 1—such as the naive 1/N strategy, 

MacKinlay and Pastor’s (2000) missing-factor model (mp), the sample-based mean–variance 

with short sale constraints (mv-c), the Bayes–Stein strategy with short sale constraints (bs-c), and 

the minimum-variance strategy with generalized constraints (g-min-c)—have a concave payoff 

relative to the equity benchmark. In particular, these strategies have a significantly positive 

coefficient for the market portfolio ( 1γ ) and a significantly negative coefficient for the timing 

variable ( 2γ ). On the other hand, the strategies that show lower performance in Table 1—such as 

the sample-based mean–variance (mv) and the Bayes–Stein (bs)—seem to have a convex payoff 

rather than a concave payoff. 

In summary, we find that none of the strategies from the optimizing models consistently 

outperforms the naive 1/N strategy in the analysis of diversified equity portfolios. A high-
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performance strategy tends to have increased left tail risk exposure, reduced upside potential, and 

a concave payoff relative to the equity benchmark. This tendency is clearer in the naive 1/N 

strategy than in the optimal portfolio strategies. 

 

4.2 Results from the analysis of individual stock portfolios  

4.2.1 Performance and tail risk measures 

 

[Insert Figure 2 about here] 

 

In this section, we use individual stocks to construct portfolios while we use diversified 

equity portfolios to construct the portfolios in Section 4.1. Figure 2 shows the mean value of the 

performance and tail risk measures for the naive 1/N portfolio, the sample-based mean–variance 

portfolio, and the sample-based mean–variance portfolio with short sale constraints. 13

Analyzing the performance measures, we find several results that are consistent with the 

literature on optimal portfolio choice in the presence of estimation error. First, we find that the 

naive diversification strategy consistently outperforms the optimal diversification strategies. 

Regardless of the kind of performance measure or the number of stocks in a portfolio, the naive 

 To 

investigate not only the comparison between naive and optimal diversification in terms of 

performance and tail risk but also the effect of diversification on performance and tail risk, we 

plot the performance and tail risk measures as a function of the number of stocks in a portfolio. 

In addition to the mean value of measures, the dotted line in Figure 2 shows the confidence band 

of each measure. The range of the confidence band is between -2 and 2 standard deviations. 

                                                            
13 Appendix 2 reports the tables for the mean values of these measures. 
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1/N portfolio has a higher Sharpe ratio, CEQ return, MPPM, and lower turnover than the mean–

variance portfolios. In particular, in the case of N = 30, the Sharpe ratio of the naive 1/N portfolio 

is 0.1921, while those for the sample-based mean–variance portfolio and the sample-based 

mean–variance portfolio with short sale constraints are -0.0079 and 0.0717, respectively. The 

CEQ return of the naive 1/N portfolio is 0.0079, but those of the sample-based mean–variance 

portfolio and the sample-based mean–variance portfolio with short sale constraints are 

only -2.9122 and 0.0024, respectively. The sample-based mean–variance portfolio has an 

extremely large turnover of 24.6812 compared to 0.0686 for the naive 1/N portfolio. Last, only 

the naive 1/N strategy has a positive value of MPPM (0.0640), while the other optimal strategies 

have a negative value of MPPM (-4.3921 for the sample-based mean–variance portfolio and -

0.0791 for the sample-based mean–variance portfolio with short sale constraints). 

Second, the short sale constraints improve performance, but not sufficiently. The sample-

based mean–variance portfolio with short sale constraints consistently outperforms that without 

constraints. The short sale constraints seem to help reduce extreme weights that fluctuate 

substantially over time to a certain degree. However, the sample-based mean–variance portfolio 

with short sale constraints still underperforms the naive 1/N portfolio. 

Third, the magnitude of the difference between the performance measures for the naive 

1/N strategy and for the optimal portfolio strategies increases as the number of stocks in the 

portfolios increases. For example, in the case of N = 10, the differences in the Sharpe ratio, CEQ 

return, turnover, and MPPM between the naive 1/N strategy and the sample-based mean–

variance portfolio are 0.1288, 1.1876, -8.3135, and 2.9902, respectively. As the number of stocks 

in the portfolios increases to N = 40, the differences also increase to 0.2135, 3.9855, -33.9899, 

and 5.0607, respectively. Especially for the sample-based mean–variance portfolio, the standard 
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deviation of the portfolio return is an increasing function of the number of stocks in the portfolio, 

although it should be a decreasing function if it is a truly optimal portfolio. As DeMiguel et al. 

(2009b) point out, the larger number of stocks implies more parameters to be estimated and, 

therefore, more room for estimation error. Moreover, all other things being equal, the larger 

number of stocks in a portfolio makes naive diversification more effective relative to optimal 

diversification. 

From analyzing tail risk measures, first, we find that the skewness for the naive 1/N 

strategy is more negative than that for the optimal portfolio strategies. In particular, in the case of 

N = 30, the skewness measure for the naive 1/N portfolio is -0.6108, while those for the sample-

based mean–variance portfolio and the sample-based mean–variance portfolio with short sale 

constraints are -0.4804 and 0.0628, respectively. Moreover, as the number of stocks in the 

portfolios increases, the skewness for the naive 1/N portfolio decreases  than the mean–variance 

portfolios. For example, the change in skewness from the naive 1/N portfolios with N = 10 to 

those with N = 40 is -0.4490, while those for the sample-based mean–variance portfolio and the 

sample-based mean–variance portfolio with short sale constraints are -0.2636 and -0.0305, 

respectively. This tendency in skewness for the naive 1/N portfolio implies that naive 

diversification increases tail risk. 

Second, the kurtosis for the naive 1/N strategy is more positive than for the sample-based 

mean–variance portfolio with short sale constraints. Although the sample-based mean–variance 

portfolio has the largest value of the kurtosis among the strategies we consider, this is largely due 

to outliers resulting from extreme portfolio weights. Furthermore, we find that the kurtosis for 

the naive 1/N strategy is an increasing function of the number of stocks in the portfolios while 

that for the sample-based mean–variance portfolio with short sale constraints is a decreasing 
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function of the number of portfolio stocks. Similar to the skewness results, this tendency in the 

kurtosis of the naive 1/N portfolio implies that naive diversification increases tail risk. 

Third, the values of VaR and ES for the optimal portfolio strategies are higher than for the 

naive 1/N strategy. Moreover, while the VaR and ES for the sample-based mean–variance 

portfolio are increasing functions of the number of portfolio stocks, these measures for the naive 

1/N portfolio are decreasing functions of the number of portfolio stocks. As for the results from 

the standard deviation (Panel B in Figure 2), this is due to the extreme weights that fluctuate 

substantially over time due to the estimation error of the optimal portfolio strategy. 

 

4.2.2 Return distribution 

 

[Insert Figure 3 about here] 

 

Figure 3 shows the kernel smoothed histogram for the return distributions of portfolios 

consisting of randomly selected stocks from the naive 1/N strategy as well as the optimal 

portfolio strategies with N = 5 and N = 50. We normalize the portfolio return by using the mean 

and standard deviation of each portfolio. For this reason, the x-axis in Figure 3 is the mean 

deviation normalized by the standard deviation. From this normalization, we obtain 1,200,000 

returns (120ⅹ10,000) for each strategy. Figure 3 also reports the corresponding normal 

distribution generated by the pooled mean and pooled standard deviation from the normalized 

return distributions of the naive 1/N and optimal portfolio strategies. 

Consistent with the results in Section 4.2.1, for both N = 5 and N = 50 Figure 3 shows 

that all strategies exhibit leptokurtic distribution, which means positive excess kurtosis and 

http://voices.yahoo.com/kernel-smoothed-distributions-ogives-histograms-4067647.html�
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heavier tails than the normal distribution. However, the naive 1/N strategy has a more negatively 

skewed distribution than the optimal portfolio strategies. This means that the naive 1/N strategy 

has a larger and longer left tail distribution than the optimal portfolio strategies. In other words, 

the naive 1/N strategy tends to increase in left tail risk exposure and reduce upside potential. 

Moreover, this tendency gets stronger as the number of portfolio stocks increases. This result 

implies that the naive 1/N strategy may have a more concave payoff than the optimal portfolio 

strategies. 

 

4.2.3 Concavity of portfolio payoff 

 

[Insert Figure 4 about here] 

 

Figure 4 presents the fraction of times that the portfolio exhibits a concave payoff.14

2 0γ <

 

Panels A and B report the results for Henriksson and Merton (1981) and Treynor and Mazuy 

(1966), respectively. In each panel, the upper figure shows the fraction of times the portfolio 

showed a significant  at the 5% level. The lower figure shows the fraction of times the 

portfolio showed a significant 1 0γ >  and 2 0γ <  at the 5% level. From the results of Henriksson 

and Merton (1981) and of Treynor and Mazuy (1966), we find that the fraction of times the 

portfolio exhibits a concave payoff in the naive 1/N strategy is much higher than for the optimal 

portfolio strategies. In particular, in the case of N = 30, from the results for Treynor and Mazuy 

(1966), 35.1% of the naive 1/N portfolio shows a concave payoff relative to the equity 

benchmark, while only 5.3% of the sample-based mean–variance portfolio and 15.1% of the 
                                                            
14 Appendix 3 reports the tables for the fraction of times the portfolio exhibits a concave payoff. 
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sample-based mean–variance portfolio with short sale constraints show a concave payoff. 

Moreover, the fraction of times the portfolio shows a concave payoff in the naive 1/N strategy 

increases as the number of portfolio stocks increases. This implies that the 1/N diversification 

increases the concavity of the portfolio’s payoff. 

To summarize the results in Sections 4.1 and 4.2, using individual stocks as well as 

diversified equity portfolios, we find that the naive diversification strategy consistently 

outperforms optimal diversification strategies. In addition, naive diversification increases tail risk 

and makes portfolio returns more concave relative to an equity benchmark. Last, the tendency 

toward naive diversification increases as the number of portfolio stocks increases. Therefore, the 

outperformance of naive diversification relative to optimal diversification results from 

compensation for the increase in tail risk and the reduced upside potential associated with a 

concave payoff. 

 

4.3 Results from robustness tests 

In the benchmark case reported in Sections 4.1 and 4.2, we assume the following: (i) The 

length of the estimation window is M = 120 months, rather than M = {60, 180}; (ii) the holding 

period is one month rather than one year; (iii) the portfolio evaluated consists of only risky assets 

rather than also including risk-free assets; (iv) the 1/N-with-rebalancing strategy is used rather 

than the 1/N-buy-and-hold strategy; (v) in calculating CEQ, the investor has a risk aversion of 

1γ =  rather than some other value, say {3,5,10}γ = ; and (vi) in calculating the MPPM, the 

investor has a risk aversion of 3ρ =  rather than the value estimated from the market portfolio.15

                                                            
15 If the market portfolio has a lognormal return, 1+rm, then the risk aversion parameter ρ can be selected so that 
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To check whether our results are robust to these assumptions, we repeat the analysis 

conducted in Sections 4.1 and 4.2 after relaxing each of the assumptions aforementioned. In 

addition, since our major finding may be an artifact of the financial crisis and excessive tail risk, 

we conduct our analysis by using a sample that does not include the period of the US subprime 

crisis. Specifically, we use the sample that spans the period from January 1963 to December 

2006. According to these robustness tests, the main empirical results are similar and qualitatively 

unchanged. To save space, we do not report the results from these robustness tests but they are 

available upon request. 

 

5. Conclusion 

This paper examines the outperformance of naive diversification relative to optimal 

diversification. This paper’s main research question is why optimal diversification cannot 

outperform naive diversification. Contrary to the literature on optimal portfolio choice, we focus 

on the tail risk exposure of the 1/N strategy rather than the estimation error of the optimal 

strategy. To do this, we construct a portfolio for each strategy by using diversified equity 

portfolios or individual stocks. Then, we empirically compare naive diversification against 

optimal diversification in terms of performance, tail risk, return distribution, and portfolio return 

concavity. 

Our paper’s major findings can be summarized as follows. First, the naive diversification 

strategy outperforms the optimal diversification strategy. In general, the Sharpe ratio, CEQ return, 

and MPPM of the naive diversification strategy are higher or indistinguishable from those of the 
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optimal diversification strategy. Moreover, the naive diversification strategy has the lowest 

turnover. Second, naive diversification increases left tail risk exposure. The naive 1/N portfolio 

tends not only to have negative skewness and positive excess kurtosis but also to diminish the 

upside return potential. Third, naive diversification makes the portfolio returns more concave 

relative to the equity benchmark. From the test of Henriksson and Merton (1981) and Treynor 

and Mazuy (1966), we find that the portfolio return from naive diversification exhibits a much 

more concave payoff pattern than the optimal diversification. Fourth, these tendencies of naive 

diversification get stronger as the number of portfolio stocks increases. 

We do not want to imply that naive diversification is a generally recommendable 

investment strategy. Instead, we imply that the outperformance of naive diversification relative to 

optimal diversification can be explained as due to compensation for the increase in tail risk and 

the reduced upside potential associated with a concave payoff. In addition, this paper suggests 

that to evaluate the performance of a particular asset allocation strategy, tail risk exposure should 

be taken into account in addition to portfolio risk. 
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Appendix 1 

List of various asset allocation models considered by DeMiguel et al. (2009b) 

 

This table lists the various asset allocation models considered by DeMiguel et al. (2009b). The last 

column of the table gives the abbreviation used to refer to the strategy in Tables 1 and 2. 

 

#  Model Abbreviation 
Naive 
1 Naive 1/N 1/N 
Classical approach 
2 Sample-based mean–variance in sample  mv (in sample) 
3 Sample-based mean–variance  mv 
Bayesian approach 
4 Bayes–Stein bs 
5 Bayesian data-and-model  dm 
Moment restrictions 
6 Minimum variance  min 
7 MacKinlay and Pastor’s (2000) missing-factor model mp 
Portfolio constraints 
8 Sample-based mean–variance with short sale constraints  mv-c 
9 Bayes–Stein with short sale constraints  bs-c 
10 Minimum-variance with short sale constraints min-c 
11 Minimum-variance with generalized constraints  g-min-c 
Optimal combinations of portfolios 
12 Kan and Zhou’s (2007) “three-fund” model  mv-min 
13 Mixture of minimum variance and 1/N ew-min 
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Appendix 2 

Performance and tail risk measures for a portfolio consisting of randomly selected stocks, January 1963 to 

December 2011 

This table reports the mean value of the performance and tail risk measures for portfolios consisting of randomly selected 

stocks from the naive 1/N and optimal portfolio strategies. Panels A to C report the results for the naive 1/N strategy, the 

sample-based mean–variance strategy, and the sample-based mean–variance strategy with short sale constraints, 

respectively. The performance and tail risk measures we consider are the mean, standard deviation, Sharpe ratio, CEQ 

return, turnover, MPPM (ρ = 3), skewness, kurtosis, historical VaR (confidence level = 95%), and historical ES 

(confidence level = 95%). The number of portfolio stocks, N, ranges from two to 50. For each N, N stocks are randomly 

selected B times to construct portfolios (in our study, B = 10,000). To obtain sensible measures of performance and tail 

risk for the portfolios from the time-series regressions, we require that all N stocks that are randomly selected to construct 

portfolios have at least 120 months of overlapping return history. We construct portfolios by using a rolling-sample 

approach. We choose an estimation window of length M = 120 months. To avoid oversampling returns in the period of the 

US subprime crisis, we generate the first 120 months of portfolio returns.  
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Appendix 2 (continued) 

 

Panel A: Naive 1/N strategy 

N Mean Standard 
deviation 

Sharpe 
ratio CEQ Turnover MPPM Skewness Kurtosis VaR ES 

2 0.0092 0.0844 0.1116 0.0052 0.0498 -0.0219 0.3854 5.4096 0.1144 0.1579 
3 0.0093 0.0746 0.1270 0.0063 0.0582 0.0083 0.2365 5.4292 0.1012 0.1431 
4 0.0093 0.0690 0.1367 0.0067 0.0620 0.0230 0.1335 5.4977 0.0933 0.1345 
5 0.0093 0.0650 0.1454 0.0071 0.0638 0.0331 0.0563 5.5903 0.0879 0.1282 
6 0.0093 0.0623 0.1518 0.0073 0.0652 0.0395 -0.0080 5.6916 0.0842 0.1242 
7 0.0092 0.0599 0.1560 0.0073 0.0656 0.0433 -0.0832 5.7109 0.0810 0.1209 
8 0.0092 0.0585 0.1598 0.0074 0.0662 0.0462 -0.1276 5.8210 0.0789 0.1188 
9 0.0092 0.0573 0.1642 0.0076 0.0668 0.0495 -0.1787 5.8530 0.0774 0.1175 

10 0.0093 0.0559 0.1686 0.0076 0.0670 0.0524 -0.2316 5.8426 0.0755 0.1152 
11 0.0092 0.0550 0.1712 0.0077 0.0673 0.0541 -0.2679 5.9060 0.0742 0.1140 
12 0.0092 0.0544 0.1714 0.0076 0.0675 0.0541 -0.2970 5.9847 0.0732 0.1133 
13 0.0092 0.0537 0.1749 0.0077 0.0677 0.0561 -0.3233 5.9791 0.0723 0.1123 
14 0.0092 0.0530 0.1767 0.0078 0.0679 0.0572 -0.3542 5.9926 0.0713 0.1111 
15 0.0091 0.0525 0.1771 0.0077 0.0678 0.0570 -0.3963 6.0785 0.0705 0.1110 
16 0.0091 0.0521 0.1792 0.0078 0.0680 0.0583 -0.4110 6.0839 0.0701 0.1103 
17 0.0091 0.0516 0.1811 0.0078 0.0681 0.0591 -0.4318 6.1275 0.0694 0.1096 
18 0.0092 0.0513 0.1824 0.0078 0.0683 0.0598 -0.4679 6.1706 0.0690 0.1093 
19 0.0092 0.0510 0.1845 0.0079 0.0683 0.0610 -0.4680 6.1725 0.0685 0.1087 
20 0.0091 0.0507 0.1836 0.0078 0.0686 0.0604 -0.4806 6.1940 0.0684 0.1084 
22 0.0091 0.0503 0.1857 0.0078 0.0685 0.0614 -0.5195 6.2596 0.0675 0.1080 
24 0.0091 0.0499 0.1873 0.0079 0.0686 0.0621 -0.5405 6.2892 0.0670 0.1075 
26 0.0091 0.0493 0.1899 0.0079 0.0688 0.0632 -0.5741 6.3388 0.0662 0.1067 
28 0.0092 0.0489 0.1913 0.0079 0.0686 0.0640 -0.5893 6.3814 0.0656 0.1060 
30 0.0091 0.0486 0.1921 0.0079 0.0686 0.0640 -0.6108 6.3906 0.0653 0.1055 
32 0.0091 0.0483 0.1928 0.0079 0.0688 0.0642 -0.6220 6.4168 0.0649 0.1052 
34 0.0091 0.0482 0.1936 0.0079 0.0688 0.0646 -0.6443 6.4778 0.0646 0.1051 
36 0.0091 0.0480 0.1940 0.0079 0.0688 0.0646 -0.6571 6.4982 0.0646 0.1050 
38 0.0091 0.0479 0.1954 0.0080 0.0690 0.0654 -0.6651 6.5051 0.0643 0.1050 
40 0.0091 0.0477 0.1956 0.0079 0.0688 0.0653 -0.6806 6.5690 0.0640 0.1046 
45 0.0091 0.0473 0.1974 0.0080 0.0689 0.0661 -0.7049 6.6022 0.0634 0.1040 
50 0.0091 0.0470 0.1985 0.0080 0.0689 0.0664 -0.7247 6.6299 0.0630 0.1037 
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Appendix 2 (continued) 

 

Panel B: Sample-based mean–variance strategy 

N Mean Standard 
deviation 

Sharpe 
ratio CEQ Turnover MPPM Skewness Kurtosis VaR ES 

2 0.0111 0.5177 0.0575 -0.8113 4.1511 -2.7841 0.0936 24.9496 0.2663 0.8576 
3 0.0134 0.5744 0.0609 -1.3278 5.3772 -2.9336 0.0196 22.4049 0.2844 0.9218 
4 0.0128 0.5217 0.0608 -1.1053 5.4474 -2.7787 -0.0239 19.9711 0.2822 0.8623 
5 0.0075 0.5007 0.0579 -0.9971 5.8071 -2.8142 -0.0893 18.8855 0.2895 0.8836 
6 0.0085 0.5366 0.0554 -1.4028 6.4725 -2.6486 -0.0946 18.0310 0.2930 0.9103 
7 0.0071 0.5222 0.0508 -1.3328 6.7314 -2.7225 -0.1260 17.8087 0.2964 0.9091 
8 0.0066 0.5625 0.0459 -1.4753 7.8809 -2.8994 -0.2302 18.2846 0.3121 0.9789 
9 0.0057 0.5444 0.0435 -1.3013 8.3950 -2.9476 -0.2047 17.9634 0.3194 0.9657 

10 0.0015 0.5162 0.0398 -1.1800 8.3805 -2.9379 -0.2450 16.9727 0.3210 0.9649 
11 0.0070 0.5823 0.0365 -1.7613 9.7223 -3.0440 -0.2401 17.5052 0.3332 0.9915 
12 -0.0011 0.5583 0.0311 -1.3593 10.1914 -3.1081 -0.3556 17.4608 0.3444 1.0468 
13 -0.0027 0.5976 0.0284 -1.6332 10.9955 -3.1662 -0.4060 17.8731 0.3596 1.1266 
14 -0.0008 0.6316 0.0264 -1.9044 11.7759 -3.3533 -0.3715 18.0787 0.3688 1.1600 
15 -0.0035 0.6064 0.0226 -1.4921 12.6407 -3.5081 -0.3416 17.7134 0.3743 1.1561 
16 -0.0015 0.6677 0.0207 -2.2208 13.5785 -3.5520 -0.3732 18.0583 0.3803 1.2077 
17 -0.0076 0.6347 0.0169 -1.6208 13.9261 -3.5340 -0.4470 18.3084 0.3903 1.2501 
18 -0.0037 0.6457 0.0156 -1.9025 14.2317 -3.5022 -0.3970 18.1988 0.3878 1.2001 
19 -0.0001 0.6824 0.0138 -2.4102 15.1230 -3.6225 -0.3645 18.2015 0.3968 1.2160 
20 -0.0086 0.6563 0.0107 -1.8260 15.9083 -3.6458 -0.4057 17.9663 0.4047 1.2906 
22 -0.0070 0.6932 0.0081 -2.2640 17.2180 -3.8679 -0.3958 18.4341 0.4224 1.3188 
24 -0.0076 0.7095 0.0034 -2.0955 19.8306 -4.1218 -0.4380 18.4722 0.4417 1.3560 
26 -0.0082 0.7933 0.0010 -3.1504 20.8574 -4.0529 -0.4561 18.9705 0.4529 1.4785 
28 -0.0102 0.7882 -0.0047 -2.7760 22.4218 -4.1731 -0.5441 19.5072 0.4711 1.4987 
30 -0.0113 0.8223 -0.0079 -2.9122 24.6812 -4.3921 -0.4804 19.3595 0.4933 1.5693 
32 -0.0049 0.8409 -0.0076 -3.0447 25.9826 -4.4098 -0.4302 19.7483 0.4878 1.5224 
34 -0.0112 0.8918 -0.0118 -3.4961 28.2495 -4.5967 -0.5030 20.2150 0.5082 1.6736 
36 -0.0141 0.8822 -0.0131 -3.3035 29.3153 -4.7934 -0.4722 20.1709 0.5215 1.6900 
38 -0.0094 0.9631 -0.0141 -3.9653 31.9517 -4.8758 -0.4603 20.7779 0.5287 1.7546 
40 -0.0132 0.9719 -0.0179 -3.9775 34.0587 -4.9954 -0.5086 21.4398 0.5471 1.8182 
45 -0.0138 1.0906 -0.0207 -4.7457 39.5816 -5.4509 -0.5186 22.6987 0.5875 2.0069 
50 -0.0144 1.1801 -0.0223 -5.6389 43.9719 -5.5398 -0.4514 23.8790 0.6113 2.1424 
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Appendix 2 (continued) 

 

Panel C: Sample-based mean–variance strategy with short sale constraints 

N Mean Standard 
deviation 

Sharpe 
ratio CEQ Turnover MPPM Skewness Kurtosis VaR ES 

2 0.0077 0.0892 0.0863 0.0034 0.0678 -0.0590 0.2728 5.1567 0.1273 0.1758 
3 0.0075 0.0868 0.0854 0.0035 0.1017 -0.0538 0.1700 5.0858 0.1256 0.1749 
4 0.0073 0.0868 0.0826 0.0033 0.1220 -0.0561 0.1477 5.1372 0.1264 0.1762 
5 0.0071 0.0865 0.0812 0.0032 0.1361 -0.0562 0.1289 5.1240 0.1266 0.1764 
6 0.0071 0.0869 0.0793 0.0031 0.1472 -0.0588 0.1148 5.1429 0.1273 0.1779 
7 0.0070 0.0872 0.0785 0.0030 0.1541 -0.0606 0.1023 5.0661 0.1279 0.1789 
8 0.0070 0.0876 0.0777 0.0030 0.1599 -0.0619 0.0952 5.1135 0.1290 0.1800 
9 0.0071 0.0883 0.0783 0.0030 0.1652 -0.0634 0.0896 5.0559 0.1303 0.1816 

10 0.0070 0.0882 0.0774 0.0029 0.1702 -0.0638 0.0846 5.0294 0.1302 0.1813 
11 0.0070 0.0891 0.0762 0.0028 0.1733 -0.0670 0.0798 5.0056 0.1317 0.1835 
12 0.0069 0.0892 0.0749 0.0027 0.1777 -0.0685 0.0891 5.0728 0.1319 0.1836 
13 0.0070 0.0893 0.0757 0.0028 0.1798 -0.0678 0.0869 4.9787 0.1324 0.1838 
14 0.0069 0.0897 0.0751 0.0027 0.1832 -0.0694 0.0850 4.9864 0.1329 0.1847 
15 0.0069 0.0899 0.0746 0.0026 0.1850 -0.0711 0.0791 4.9790 0.1331 0.1854 
16 0.0069 0.0901 0.0752 0.0027 0.1871 -0.0707 0.0696 4.9773 0.1337 0.1859 
17 0.0067 0.0902 0.0727 0.0025 0.1898 -0.0731 0.0729 4.9606 0.1339 0.1861 
18 0.0069 0.0906 0.0740 0.0026 0.1907 -0.0734 0.0636 4.9545 0.1346 0.1874 
19 0.0070 0.0907 0.0749 0.0027 0.1921 -0.0722 0.0742 4.9176 0.1345 0.1868 
20 0.0068 0.0909 0.0724 0.0025 0.1951 -0.0753 0.0722 4.9425 0.1351 0.1875 
22 0.0068 0.0910 0.0729 0.0025 0.1981 -0.0753 0.0706 4.9076 0.1354 0.1876 
24 0.0067 0.0916 0.0714 0.0023 0.1988 -0.0788 0.0689 4.8814 0.1370 0.1893 
26 0.0068 0.0916 0.0725 0.0025 0.2035 -0.0771 0.0681 4.9227 0.1365 0.1892 
28 0.0069 0.0920 0.0725 0.0024 0.2036 -0.0781 0.0636 4.8766 0.1369 0.1900 
30 0.0068 0.0919 0.0717 0.0024 0.2072 -0.0791 0.0628 4.8626 0.1372 0.1900 
32 0.0068 0.0920 0.0726 0.0024 0.2082 -0.0787 0.0715 4.8567 0.1375 0.1901 
34 0.0067 0.0922 0.0707 0.0022 0.2104 -0.0813 0.0614 4.8277 0.1377 0.1907 
36 0.0068 0.0924 0.0718 0.0023 0.2115 -0.0805 0.0617 4.8233 0.1379 0.1910 
38 0.0068 0.0930 0.0719 0.0023 0.2131 -0.0825 0.0603 4.7679 0.1390 0.1922 
40 0.0067 0.0924 0.0716 0.0023 0.2152 -0.0810 0.0541 4.7799 0.1383 0.1913 
45 0.0068 0.0931 0.0721 0.0023 0.2178 -0.0826 0.0552 4.7942 0.1394 0.1926 
50 0.0067 0.0931 0.0704 0.0022 0.2219 -0.0841 0.0585 4.7617 0.1394 0.1926 
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Appendix 3 

Fraction of times the portfolio exhibited a concave payoff as a function of the number of portfolio stocks, January 

1963 to December 2011 

 

This table reports the fraction of times the portfolio showed a concave payoff. To examine the concavity of a portfolio’s 

payoff, we use the coefficients of Henriksson and Merton (1981) and Treynor and Mazuy (1966). These coefficients are 

computed from the regression rt = γ0 + γ1mt + γ2ct + ε t, where rt and mt are the excess returns on the portfolio and the 

market, respectively. The timing variable is ct = Max(-mt, 0) for Henriksson and Merton (1981) and ct = mt
2 for Treynor 

and Mazuy (1966). Panels A to C report the results for the naive 1/N strategy, the sample-based mean–variance strategy, 

and the sample-based mean–variance strategy with short sale constraints, respectively. Each panel reports the fraction of 

times that the portfolio showed a significant γ2 < 0 at the 5% level and the fraction of times that the portfolio showed a 

significant γ1 > 0 and γ2 < 0 at the 5% level using the coefficients of Henriksson and Merton (1981) or Treynor and Mazuy 

(1966). The number of portfolio stocks, N, ranges from two to 50. For each N, N stocks are randomly selected B times to 

construct portfolios (in our study, B = 10,000). To obtain sensible measures of performance and tail risk for the portfolios 

from the time-series regressions, we require that all N stocks that are randomly selected to construct a portfolio have at 

least 120 months of overlapping return history. We construct portfolios by using a rolling-sample approach. We choose an 

estimation window of length M = 120 months. To avoid oversampling returns in the period of the US subprime crisis, we 

generate the first 120 months of portfolio returns.  
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Appendix 3 (continued) 

 

Panel A: Naive 1/N strategy 
 Henriksson and Merton (1981) Treynor and Mazuy (1966) 

N 
Freq 

(γ2

Freq 
(γ<0 sig.) (%) 1>0, γ2

Freq 
(γ<0 sig.) (%) 2

Freq 
(γ<0 sig.) (%) 1>0, γ2<0 sig.) (%) 

2 0.1101 0.0615 0.1377 0.1318 
3 0.1286 0.0901 0.1583 0.1567 
4 0.1314 0.1020 0.1678 0.1665 
5 0.1474 0.1194 0.1803 0.1795 
6 0.1521 0.1307 0.1952 0.1947 
7 0.1571 0.1371 0.2047 0.2047 
8 0.1686 0.1544 0.2138 0.2138 
9 0.1727 0.1579 0.2252 0.2252 

10 0.1836 0.1707 0.2338 0.2338 
11 0.1878 0.1781 0.2419 0.2419 
12 0.1874 0.1797 0.2420 0.2420 
13 0.1940 0.1888 0.2531 0.2531 
14 0.2045 0.1986 0.2644 0.2644 
15 0.2111 0.2063 0.2747 0.2747 
16 0.2138 0.2087 0.2796 0.2796 
17 0.2181 0.2148 0.2845 0.2845 
18 0.2315 0.2291 0.3005 0.3005 
19 0.2292 0.2272 0.2998 0.2998 
20 0.2279 0.2263 0.2976 0.2976 
22 0.2384 0.2373 0.3125 0.3125 
24 0.2437 0.2430 0.3200 0.3200 
26 0.2553 0.2547 0.3354 0.3354 
28 0.2660 0.2656 0.3464 0.3464 
30 0.2683 0.2681 0.3508 0.3508 
32 0.2799 0.2798 0.3630 0.3630 
34 0.2810 0.2810 0.3744 0.3744 
36 0.2857 0.2856 0.3678 0.3678 
38 0.2876 0.2876 0.3759 0.3759 
40 0.2929 0.2929 0.3842 0.3842 
45 0.3066 0.3066 0.3996 0.3996 
50 0.3133 0.3133 0.4142 0.4142 
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Appendix 3 (continued) 

 

Panel B: Sample-based mean–variance strategy 
 Henriksson and Merton (1981) Treynor and Mazuy (1966) 

N 
Freq 

(γ2

Freq 
(γ<0 sig.) (%) 1>0, γ2

Freq 
(γ<0 sig.) (%) 2

Freq 
(γ<0 sig.) (%) 1>0, γ2<0 sig.) (%) 

2 0.1163 0.0249 0.1284 0.0940 
3 0.1109 0.0281 0.1242 0.0945 
4 0.1095 0.0284 0.1203 0.0913 
5 0.1138 0.0249 0.1218 0.0919 
6 0.1133 0.0253 0.1234 0.0938 
7 0.1201 0.0215 0.1221 0.0883 
8 0.1219 0.0187 0.1347 0.0980 
9 0.1248 0.0174 0.1309 0.0938 

10 0.1223 0.0138 0.1274 0.0928 
11 0.1210 0.0122 0.1278 0.0900 
12 0.1253 0.0110 0.1343 0.0903 
13 0.1216 0.0087 0.1257 0.0831 
14 0.1258 0.0078 0.1330 0.0902 
15 0.1236 0.0066 0.1281 0.0831 
16 0.1278 0.0060 0.1332 0.0791 
17 0.1325 0.0055 0.1352 0.0790 
18 0.1228 0.0049 0.1324 0.0754 
19 0.1261 0.0024 0.1321 0.0722 
20 0.1243 0.0022 0.1258 0.0702 
22 0.1289 0.0017 0.1272 0.0615 
24 0.1311 0.0013 0.1339 0.0648 
26 0.1231 0.0004 0.1256 0.0577 
28 0.1241 0.0003 0.1279 0.0537 
30 0.1210 0.0001 0.1293 0.0528 
32 0.1194 0.0002 0.1249 0.0477 
34 0.1269 0.0001 0.1275 0.0419 
36 0.1271 0.0000 0.1257 0.0391 
38 0.1207 0.0001 0.1197 0.0346 
40 0.1198 0.0000 0.1198 0.0327 
45 0.1089 0.0000 0.1105 0.0259 
50 0.1019 0.0000 0.1024 0.0228 
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Appendix 3 (continued) 

 

Panel C: Sample-based mean–variance strategy with short sale constraints 
 Henriksson and Merton (1981) Treynor and Mazuy (1966) 

N 
Freq 

(γ2

Freq 
(γ<0 sig.) (%) 1>0, γ2

Freq 
(γ<0 sig.) (%) 2

Freq 
(γ<0 sig.) (%) 1>0, γ2<0 sig.) (%) 

2 0.1201 0.0578 0.1437 0.1372 
3 0.1236 0.0694 0.1534 0.1500 
4 0.1218 0.0729 0.1496 0.1470 
5 0.1216 0.0725 0.1539 0.1511 
6 0.1282 0.0803 0.1615 0.1588 
7 0.1237 0.0826 0.1504 0.1489 
8 0.1308 0.0888 0.1636 0.1617 
9 0.1353 0.0899 0.1599 0.1588 

10 0.1267 0.0891 0.1553 0.1548 
11 0.1264 0.0889 0.1547 0.1536 
12 0.1268 0.0896 0.1600 0.1589 
13 0.1275 0.0935 0.1536 0.1528 
14 0.1266 0.0887 0.1564 0.1554 
15 0.1253 0.0929 0.1494 0.1486 
16 0.1323 0.0983 0.1591 0.1586 
17 0.1266 0.0944 0.1571 0.1569 
18 0.1263 0.0902 0.1585 0.1577 
19 0.1203 0.0900 0.1538 0.1534 
20 0.1259 0.0953 0.1549 0.1544 
22 0.1193 0.0912 0.1517 0.1511 
24 0.1168 0.0890 0.1462 0.1462 
26 0.1241 0.0956 0.1518 0.1515 
28 0.1303 0.1022 0.1572 0.1570 
30 0.1212 0.0959 0.1515 0.1514 
32 0.1249 0.0982 0.1498 0.1493 
34 0.1267 0.0983 0.1546 0.1543 
36 0.1193 0.0969 0.1415 0.1414 
38 0.1157 0.0954 0.1446 0.1445 
40 0.1164 0.0936 0.1485 0.1484 
45 0.1156 0.0950 0.1444 0.1444 
50 0.1115 0.0924 0.1445 0.1444 
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Table 1 

Extended results of DeMiguel et al. (2009b): Performance and tail risk measures for a portfolio consisting of diversified equity portfolios, January 1963 to 

December 2011 

This table reports the performance and tail risk measures for a portfolio consisting of diversified equity portfolios across the asset allocation models listed in 

Appendix 1. The dataset we consider for the diversified equity portfolios comprises the portfolios from the Fama–French four-factor model (the FF-4-factor 

dataset of DeMiguel et al., 2009b). Specifically, the dataset consists of 20 size- and book-to-market portfolios and the MKT, SMB, HML, and UMD portfolios. 

The number of diversified equity portfolios in the dataset is 24. Following Wang (2005) and DeMiguel et al. (2009b), of the 25 size- and book-to-market portfolios, 

we exclude the five portfolios containing the largest firms because the MKT, SMB, and HML portfolios are almost a linear combination of the 25 Fama–French 

portfolios. This dataset is collected from Ken French’s website. The performance and tail risk measures we consider are the mean, standard deviation, Sharpe ratio, 

CEQ return, turnover, skewness, kurtosis, historical VaR (confidence level = 95%), and historical ES (confidence level = 95%). We use all 24 assets in the dataset 

to construct the portfolios. We construct the portfolios by using a rolling-sample approach, except for the sample-based mean–variance in the sample (mv - in 

sample). We choose an estimation window of length M = 120 months.  

Strategy Mean Standard 
deviation 

Sharpe 
ratio CEQ Turnover Skewness Kurtosis VaR ES 

1/N 0.0068  0.0488  0.1393  0.0056  0.0197  -0.6051  5.9441  0.0695  0.1124  
mv (in sample) 0.1008  0.2012  0.5008  0.0805  - 0.1129  4.8421  0.1767  0.3408  
mv 0.0780  1.0123  0.0770  -0.4344  145.4396  19.9633  420.0406  0.0742  0.4063  
bs 0.0525  0.6604  0.0795  -0.1656  46.7942  19.8739  417.4976  0.0481  0.2709  
dm 0.0518  0.4219  0.1227  -0.0372  59.8727  6.1453  102.3050  0.0961  0.5210  
min 0.0001  0.0043  0.0124  0.0000  0.1336  0.1450  8.9281  0.0063  0.0103  
mp 0.0056  0.0574  0.0972  0.0039  0.0358  -0.8088  5.5972  0.0842  0.1380  
mv-c 0.0065  0.0458  0.1421  0.0055  0.2748  -0.7920  7.0535  0.0727  0.1100  
bs-c 0.0066  0.0422  0.1571  0.0057  0.2315  -0.9402  8.1606  0.0679  0.1033  
min-c 0.0045  0.0157  0.2887  0.0044  0.0324  -0.6739  6.6649  0.0211  0.0371  
g-min-c 0.0060  0.0247  0.2417  0.0057  0.0330  -0.7985  7.2549  0.0331  0.0593  
mv-min 0.0430  0.5232  0.0821  -0.0939  43.4867  19.7412  413.6792  0.0413  0.2197  
ew-min 0.0001  0.0044  0.0158  0.0001  0.1331  0.1570  9.0905  0.0063  0.0103  
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Table 2 

Timing coefficients for a portfolio consisting of diversified equity portfolios, January 1963 to 

December 2011 

This table reports the timing coefficients for a portfolio consisting of diversified equity portfolios across 

the asset allocation models listed in Appendix 1. The diversified equity portfolios dataset we consider is 

the set of portfolios from the Fama–French four-factor model (the FF-4 factor dataset in DeMiguel et al., 

2009b). Specifically, the dataset consists of 20 size- and book-to-market portfolios and the MKT, SMB, 

HML, and UMD portfolios. The number of diversified equity portfolios in the dataset is 24. Following 

Wang (2005) and DeMiguel et al. (2009b), of the 25 size- and book-to-market portfolios, we exclude the 

five portfolios containing the largest firms, because the MKT, SMB, and HML portfolios are almost a 

linear combination of the 25 Fama–French portfolios. This dataset is collected from Ken French’s website. 

To examine the portfolio payoff concavity, we use the coefficients of Henriksson and Merton (1981) and 

Treynor and Mazuy (1966). The coefficients are computed from the regression rt = γ0 + γ1mt + γ2ct + ε t, 

where rt and mt are the excess returns on the portfolio and the market, respectively. The timing variable is 

ct = Max(-mt, 0) for Henriksson and Merton (1981) and ct = mt
2 

Strategy 

for Treynor and Mazuy (1966). We use 

all 24 assets in the dataset to construct portfolios. We construct portfolios by using a rolling-sample 

approach, except for the sample-based mean–variance in sample (mv - in sample). We choose an 

estimation window of length M = 120 months. The t-statistics are given in parentheses. Numbers in bold 

denote the coefficients’ statistical significance. 

Henriksson and Merton (1981) Treynor and Mazuy (1966) 
γ γ0 γ1 γ2 γ0 γ1 

1/N 
2 

0.0057 0.8568 -0.1660 0.0041 0.9337 -0.6007 
 (4.00) (23.26) (-2.76) (3.92) (47.85) (-2.82) 

mv (in sample) 0.1069 0.5138 -0.5195 0.1039 0.7386 -2.8301 
 (7.40) (1.38) (-0.86) (9.94) (3.75) (-1.32) 

mv 0.0067 4.0512 3.3301 0.0530 2.4161 6.4085 
 (0.09) (2.14) (1.08) (0.99) (2.41) (0.59) 

bs 0.0071 2.6170 2.1073 0.0373 1.5763 3.6992 
 (0.15) (2.12) (1.05) (1.07) (2.41) (0.52) 

dm 0.0623 0.1132 -0.6820 0.0597 0.3989 -4.2791 
 (2.02) (0.14) (-0.53) (2.68) (0.95) (-0.94) 

min 0.0005 0.0046 -0.0309 0.0002 0.0190 -0.1028 
 (1.73) (0.58) (-2.39) (0.91) (4.54) (-2.25) 

mp 0.0111 0.7298 -0.5410 0.0066 0.9741 -2.3335 
 (4.96) (12.70) (-5.77) (4.14) (32.56) (-7.16) 

mv-c 0.0118 0.3892 -0.4329 0.0083 0.5833 -1.9421 
 (4.63) (5.95) (-4.05) (4.58) (17.01) (-5.20) 

bs-c 0.0122 0.3228 -0.4308 0.0087 0.5164 -1.9126 
 (5.09) (5.25) (-4.29) (5.08) (16.04) (-5.45) 
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min-c 0.0080 0.0035 -0.2194 0.0057 0.1062 -0.7234 
 (7.71) (0.13) (-5.02) (7.51) (7.46) (-4.66) 

g-min-c 0.0080 0.2740 -0.1987 0.0058 0.3676 -0.6214 
 (6.50) (8.70) (-3.86) (6.47) (21.94) (-3.40) 

mv-min 0.0081 2.0498 1.6089 0.0320 1.2487 2.4297 
 (0.21) (2.10) (1.01) (1.16) (2.41) (0.43) 

ew-min 0.0006 0.0066 -0.0318 0.0002 0.0214 -0.1066 
 (1.80) (0.83) (-2.47) (0.97) (5.12) (-2.34) 
       

 

 

Figure 1 

Return distribution of a portfolio of diversified stock portfolios 

 

This figure shows the kernel smoothed histogram for the return distributions of portfolios consisting of 

diversified stock portfolios from the naive 1/N and optimal portfolio strategies. This figure also shows the 

corresponding normal distribution generated by the pooled mean and pooled standard deviation from the 

return distributions of the naive 1/N and optimal portfolio strategies. The dataset we consider the 

diversified stock portfolios is the set of portfolios from the Fama–French four-factor model. Specifically, 

the dataset consists of 20 size- and book-to-market portfolios and the MKT, SMB, HML, and UMD 

portfolios. The number of diversified assets in the dataset is 24. Following Wang (2005) and DeMiguel et 

al. (2009b), of the 25 size- and book-to-market portfolios, we exclude the five portfolios containing the 

largest firms, because the MKT, SMB, and HML portfolios are almost a linear combination of the 25 

Fama–French portfolios. This dataset is collected from Ken French’s website. We use all 24 assets in the 

dataset to construct portfolios. We construct portfolios by using a rolling-sample approach. We choose an 

estimation window of length M = 120 months.  
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Figure 2 

Performance and tail risk measures of a portfolio consisting of randomly selected stocks as a 

function of the number of portfolio stocks, January 1963 to December 2011 

 

This figure shows the mean value of the performance and tail risk measures for portfolios consisting of 

randomly selected stocks from the naive 1/N and optimal portfolio strategies. The performance and tail 

risk measures we consider are the mean, standard deviation, Sharpe ratio, CEQ return, turnover, MPPM 

(ρ = 3), skewness, kurtosis, historical VaR (confidence level = 95%), and historical ES (confidence level 

= 95%). The number of stocks in the portfolio, N, ranges from two to 50. For each N, N stocks are 

randomly selected B times to construct portfolios (in our study, B = 10,000). To obtain sensible measures 

of performance and tail risk for portfolios from the time-series regressions, we require that all N stocks 

that are randomly selected to construct portfolios have at least 120 months of overlapping return history. 

We construct portfolios by using a rolling-sample approach. We choose an estimation window of length 

M = 120 months. To avoid oversampling returns in the period of the US subprime crisis, we generate the 

first 120 months of portfolio returns. The dotted line in the figure shows the confidence band of each 

measure. The range of the confidence band is between -2 and 2 standard deviations.  
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Figure 2 (continued) 
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Figure 2 (continued) 

 

Panel G. Skewness      Panel H. Kurtosis 
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Figure 3 

Return distribution of a portfolio  of randomly selected stocks, January 1963 to December 2011 

 

This figure shows the kernel smoothed histogram for the return distributions of portfolios consisting of 

randomly selected stocks from the naive 1/N and optimal portfolio strategies in case of N = 5 (P5) and N 

= 50 (P50). Here, 1/n, mv, and mvc represent the naive 1/N portfolio, the sample-based mean–variance 

portfolio, and the sample-based mean–variance portfolio with short sale constraints, respectively. For 

each N, N stocks are randomly selected B times to construct portfolios (in our study, B = 10,000). To 

obtain sensible measures of performance and tail risk for portfolios from the time-series regressions, we 

require that all N stocks that are randomly selected to construct portfolios have at least 120 months of 

overlapping return history. We construct portfolios by using a rolling-sample approach. We choose an 

estimation window of length M = 120 months. To avoid oversampling returns in the period of the US 

subprime crisis, we generate the first 120 months of portfolio returns. We normalize the portfolio return 

by using the mean and standard deviation of each portfolio. For this reason, the x-axis in this figure is the 

mean deviation normalized by the standard deviation. From this normalization, we obtain 1,200,000 

returns (120ⅹ10,000) for each strategy. This figure also shows the corresponding normal distributions 

(P5-normal and P50-normal) generated, respectively, by the pooled mean and pooled standard deviation 

from the normalized return distributions of the naive 1/N and optimal portfolio strategies.  

 



50 

 

-4 -3 -2 -1 0 1 2 3 4
0

2

4

6

8

10

12
x 10

4

 

 

P5-1/n
P5-mv
P5-mvc
P5-normal
P50-1/n
P50-mv
P50-mvc
P50-normal

 
 

 



51 

 

 

Figure 4 

Fraction of times that the portfolio exhibits a concave payoff as a function of the number of 

portfolio stocks, January 1963 to December 2011 

 

This figure presents the fraction of times that the portfolio shows a concave payoff. To examine the 

portfolio payoff concavity, we use the coefficients of Henriksson and Merton (1981) and Treynor and 

Mazuy (1966). The coefficients are computed from the regression rt = γ0 + γ1mt + γ2ct + εt, where rt and 

mt are the excess returns on the portfolio and the market, respectively. The timing variable is ct = Max(-

mt, 0) for Henriksson and Merton (1981) and ct = mt
2 for Treynor and Mazuy (1966). Panels A and B 

report the results for Henriksson and Merton (1981) and Treynor and Mazuy (1966), respectively. In each 

panel, the upper figure shows the fraction of times that the portfolio shows a significant γ2 < 0 at the 5% 

level. The lower figure shows the fraction of times that the portfolio shows a significant γ1 > 0 and γ2 < 0 

at the 5% level. The number of stocks in the portfolio, N, ranges from two to 50. For each N, N stocks are 

randomly selected B times to construct portfolios (in our study, B = 10,000). To obtain sensible measures 

of performance and tail risk for the portfolios from the time-series regressions, we require that all N 

stocks that are randomly selected to construct portfolio have at least 120 months of overlapping return 

history. We construct portfolios by using a rolling-sample approach. We choose an estimation window of 

length M = 120 months. To avoid oversampling returns in the period of the US subprime crisis, we 

generate the first 120 months of portfolio returns.  
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Figure 4 (continued) 

Panel A. Henriksson and Merton’s (1981) timing coefficients 

1) Fraction of times the portfolio shows a significant γ2 
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2) Fraction of times the portfolio shows a significant γ1 > 0 and γ2 < 0 at the 5% level (%) 
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Figure 4 (continued) 

Panel B. Treynor and Mazuy’s (1966) timing coefficients 

1) Fraction of times the portfolio shows a significant γ2 < 0 at the 5% level (%) 
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